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How to compare diffusion processes assessed by single-particle tracking
and pulsed field gradient nuclear magnetic resonance
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Heterogeneous diffusion processes occur in many different fields such as transport in living cells
or diffusion in porous media. A characterization of the transport parameters of such processes can
be achieved by ensemble-based methods, such as pulsed field gradient nuclear magnetic resonance
(PFG NMR), or by trajectory-based methods obtained from single-particle tracking (SPT) experi-
ments. In this paper, we study the general relationship between both methods and its application
to heterogeneous systems. We derive analytical expressions for the distribution of diffusivities from
SPT and further relate it to NMR spin-echo diffusion attenuation functions. To exemplify the ap-
plicability of this approach, we employ a well-established two-region exchange model, which has
widely been used in the context of PFG NMR studies of multiphase systems subjected to interphase
molecular exchange processes. This type of systems, which can also describe a layered liquid with
layer-dependent self-diffusion coefficients, has also recently gained attention in SPT experiments. We
reformulate the results of the two-region exchange model in terms of SPT-observables and compare
its predictions to that obtained using the exact transformation which we derived. © 2011 American
Institute of Physics. [doi:10.1063/1.3647875]

I. INTRODUCTION

Diffusion is one of the omnipresent phenomena in na-
ture and involved in most physico-chemical and biologi-
cal processes.1 Often media, where the molecules perform
their chaotic Brownian motion, do include different types
of compartments, regions of different densities, or domains
surrounded by semipermeable membranes. Diffusion proper-
ties in these spatially separated regions may, in general, be
different. Altogether, this typically gives rise to very com-
plex processes of diffusive mass transport including regimes
of anomalous diffusion. To model such inhomogeneous sys-
tems, they may be represented to consist of a number of
domains with different local diffusivities subjected to ex-
change processes between them. The most simple two-phase
exchange model with an exponential exchange kernel has of-
ten been used to describe experimental results obtained using
pulsed field gradient nuclear magnetic resonance (PFG NMR)
technique.2 Such examples include, e.g., diffusive exchange
between two pools of guest molecules in zeolite crystals and
surrounding gas atmosphere3 and between extra- and intra-
cellular water4 in biosystems.

Recently, a new type of experimental approach, namely
single-particle tracking (SPT) has emerged.5 It provides an
alternative method for studying diffusion processes and for
measuring their properties as well as some properties of the
surrounding medium.6 In contrast to PFG NMR, where an
ensemble of diffusing particles is investigated, SPT only ob-
serves individual tracer particles. In particular, fluorescent dye
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molecules, such as rhodamine B, in a solvent, e.g., tetrakis(2-
ethylhexoxy)-silane (TEHOS), which arranges in ultra-thin
liquid layers,7 are excited by laser radiation. The emitted
light of the dyes is captured with a wide-field microscope
and recorded by a CCD camera. Hence, the obtained movies
show diffusing spots representing a two-dimensional projec-
tion of the three-dimensional motion of the dyes. From a
statistical point of view, such processes are known as ob-
served diffusion8–10 or hidden Markov models11, 12 leading,
in general, to the loss of the Markov property. A tracking
algorithm detects the positions of the spots and connects
them to trajectories.13 A basic quantity for the characteri-
zation of diffusion processes is obtained by taking two po-
sitions x(t) and x(t + τ ) from a trajectory separated by a
time lag τ and by considering the rescaled squared displace-
ment [x(t + τ ) − x(t)]2/τ . This quantity is a local or micro-
scopic diffusivity which fluctuates along a given trajectory
or in an ensemble of diffusing particles. It is natural to ex-
tract the corresponding distribution of diffusivities from ex-
periments by forming histograms of the observed rescaled
squared displacements.14 Note that other definitions of dif-
fusivity distributions may be found in the literature.15 For ho-
mogeneous diffusion processes the distribution of diffusivities
is independent of the time lag τ , whereas for heterogeneous
systems a non-trivial τ -dependence is observed. Therefore in
analyzing heterogeneous systems, the distribution of diffusiv-
ities provides advantages over an analysis via mean squared
displacements because in addition to its mean value it con-
tains all information about the fluctuations.16 Furthermore,
quantities such as the mean diffusion coefficient, obtained as
the first moment of the distribution of diffusivities, are well
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defined, and thus time-dependent diffusion coefficients and
their fluctuations can be calculated.

The objective of this work is to investigate the connec-
tion between the two different techniques of measuring dif-
fusion. SPT and PFG NMR are clearly related to each other,
since both measure displacements of diffusing particles. For
instance, the time lag between the observation of two posi-
tions in SPT corresponds to the time interval between two
gradient pulses in PFG NMR. In both SPT and PFG NMR
this time lag τ is a parameter, which can be tuned by vary-
ing the time between snapshots and by altering the temporal
distance between gradient pulses, respectively. Furthermore,
the signal attenuation in PFG NMR is related to the propa-
gator in Fourier space, from which the distribution of diffu-
sivities can be calculated. At first, it seems to be sufficient
to compare the propagators obtained from both types of ex-
periments directly. However, if diffusion processes with het-
erogeneities or anomalous behavior are considered, access to
the propagator will be complicated or even hindered. In such
cases, the distribution of diffusivities offers a well-defined
analysis of the processes and a comparison of data from the
two approaches is feasible. Moreover, it becomes possible to
contrast results from time-averaged and ensemble-averaged
quantities and detect anomalous diffusion leading to ergod-
icity breaking as reported recently.17 More generally, an im-
provement in the analysis of heterogeneous diffusion could
benefit from the link between single-particle analysis and en-
semble methods. Hence, analytical expressions for one- up
to three-dimensional processes are derived which transform
PFG NMR signal attenuation into the distribution of single-
particle diffusivities from SPT.

For simple systems with heterogeneous diffusion the
two-region exchange model of PFG NMR offers an analyt-
ical expression for the spin-echo diffusion attenuation.18 In
conjunction with our transformation, this model provides an
example, where the distribution of single-particle diffusivi-
ties can be calculated exactly and also the non-trivial time-lag
dependence can be investigated. In this context we consider
a two-layer liquid film on a homogeneous surface character-
ized by two distinct diffusion coefficients.16 This two-layer
system corresponds exactly to the two-region exchange model
of PFG NMR. In particular, its condition of exponential wait-
ing times is fulfilled since a change in the diffusion coeffi-
cient is possible at any time and independent of the particles’
current positions. For a system comprising an arbitrary num-
ber of layers, exact asymptotic results for the dispersion of
particles in the long-time limit have already been provided.19

We substantiate our findings by analyzing data from simu-
lated single-particle trajectories of heterogeneous diffusion.
To evaluate experimental limitations, we study the influence
of a signal attenuation bounded to a certain range of k-values.
The impact on the distribution of single-particle diffusivities
will also be pointed out.

The remainder of the paper is organized as follows. In
Sec. II, we recall the basic principles of PFG NMR and un-
derline the differences to SPT experiments. In particular, we
discuss properties of both approaches and the connection be-
tween them. In this context, we introduce the distribution of
single-particle diffusivities and provide expressions for the

well-known case of homogeneous diffusion. To apply our new
concepts to some more elaborated systems, we consider in
Sec. III heterogeneous diffusion in two-region systems, where
analytical expressions of the PFG NMR signal attenuation ex-
ist. We outline the principles of the simulation of such sys-
tems in Sec. IV. In order to provide a simple relation between
signal attenuation and distribution of diffusivities, we suggest
an approximation in Sec. V to avoid the inconvenient Fourier
transformation. This approximation is then compared to the
exact expressions of the relation in Sec. VI for simulated data
of the two-region system. Finally, in Sec. VII we address the
issue of finite intensity of the magnetic field gradient pulses in
the PFG NMR experiment and illustrate its influence on our
exact transformation into the distribution of diffusivities.

II. SIGNAL ATTENUATION AND DISTRIBUTION
OF DIFFUSIVITIES

Diffusion measurement by PFG NMR is based on ob-
serving the transverse magnetization of nuclear spins in a con-
stant magnetic field. Offering the highest sensitivity and oc-
curring in numerous chemical compounds, in most cases the
nuclei under study are protons. By superimposing, over two
short time intervals, an additional magnetic field with a large
gradient, the displacement of the nuclei (and hence of the
molecules in which they are contained) in the time span be-
tween these two “gradient pulses” is recorded in a phase shift
of their orientation in the plane perpendicular to the magnetic
field with respect to the mean orientation. Hence, the distri-
bution of the diffusion path lengths appears in the distribu-
tion of these phase shifts and, consequently, in the vector sum
of the magnetic moments of the individual spins, i.e., in the
magnetization.2, 20–22 Since it is this magnetization which is
recorded as the NMR signal, molecular diffusion leads to an
attenuation of the signal intensity during the PFG NMR ex-
periments which is larger then the displacements in the time
interval between these two gradient pulses are.

The signal attenuation from PFG NMR may be shown to
obey the relation2, 18, 20, 23

�(τ, k) =
∫

dr p(r, τ ) exp(ikr) (1)

with the ensemble-averaged conditional probability density

p(r, τ ) =
∫

dx p(x + r, τ |x) p0(x), (2)

where p(x + r, τ |x) is the stationary probability density of a
displacement r = (r1, . . . , rd )T in d dimensions in the time in-
terval τ and p0(x) refers to the equilibrium distribution given
by the Boltzmann distribution. Further, τ is the time inter-
val between the two gradient pulses and represents the diffu-
sion time in the PFG NMR experiment. According to the PFG
NMR experiment, signal attenuation is measured in the direc-
tion of the applied field gradients. Thus, k in Eq. (1) is given
by k = k ê, where ê denotes the unit vector in that direction.
The quantity k is a measure of the intensity of the field gra-
dient pulses. Assuming an isotropic system, without loss of
generality, an arbitrary direction k̂ = (k, 0, . . . , 0)T may be
considered. Obviously, the scalar product in the exponential
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of Eq. (1) picks out only the component r1 of the displace-
ment r. Then, the signal attenuation

�1(τ, k) = �(τ, k̂ = (k, 0, . . . , 0)T)

=
∫ +∞

−∞
dr1 p1(r1, τ ) exp(ikr1), (3)

depends only on scalar values corresponding to the chosen di-
rection and p1(r1, τ ) is the projection of the probability den-
sity, Eq. (2), on the considered direction, given by

p1(r1, τ ) =
∫

· · ·
∫

dr2 · · · drd p(r, τ ). (4)

In NMR, p1(r1, τ ) in Eq. (3) is known as the mean prop-
agator, i.e., the probability density that, during τ , an arbi-
trarily selected molecule has been shifted over a distance r1

in the direction of the applied field gradients. However, it
should be noted that for heterogeneous systems, such as sys-
tems with regions of different mobility, p1(r1, τ ) may not
be called propagator since it cannot evolve the system due
to the loss of Markovianity. The reason is that, in general,
p1(r1, τ ) of such systems does not satisfy the Chapman–
Kolmogorov equation.24 Non-Markovian behavior, besides
others, may also arise in systems which can be modeled by
the fractional Brownian motion25 or by certain fractional dif-
fusion equations.26 Further, the mean propagator in Fourier
space as given by Eq. (1) corresponds to the incoherent inter-
mediate scattering function. The details of this connection are
given in the Appendix A for clarification.

In contrast to the PFG NMR technique, which is
ensemble-based as described above, SPT experiments allow
to follow the trace of individual diffusing molecules. There-
fore, by considering the displacement of a particular molecule
in d dimensions it is natural to define a microscopic single-
particle diffusivity Dt(τ ) by the relation

Dt (τ ) = [x(t + τ ) − x(t)]2/(2d τ ), (5)

where x(t) denotes the trajectory of an arbitrary stochastic
process. Note that the term “microscopic” has been used be-
fore by Kusumi and co-workers27 to characterize the short-
time behavior of averaged squared displacements equiva-
lent to the small τ limit of our mean diffusivity defined in
Eq. (10) below. In the context of Markovian diffusion pro-
cesses this limit also corresponds via jump moments to
the diffusion terms appearing in Fokker-Planck equations.24

Here, we use the term microscopic in analogy to the statistical
physics concept of microstates to distinguish it from ensem-
ble based averages. For a given time lag τ , the microscopic
single-particle diffusivity is a fluctuating quantity along a tra-
jectory x(t) and we now ask for the probability p(D)dD that,
under the so far considered conditions of normal diffusion,
Dt(τ ) attains a value in the interval D . . . D + dD. Therefore,
the distribution of single-particle diffusivities is defined as

p(D, τ ) = 〈δ (D − Dt (τ ))〉 , (6)

where 〈. . . 〉 denotes an average, which can be evaluated ei-
ther as a time-average 〈. . .〉 = limT →∞ 1/T

∫ T

0 . . . dt , which
is accessible by SPT, or as an ensemble average, appropri-
ate for NMR measurements. Note, however, that in SPT, T is

usually limited by the finiteness of the trajectory and compli-
cations arise due to the blinking and bleaching of the fluores-
cent dyes.28 However, advanced tracking algorithms in SPT
reduce these effects13, 29 and arbitrary time lags τ between
snapshots, which are only limited below by the inverse frame
rate of the video microscope, can be accomplished. For exper-
imental SPT data, the distribution of diffusivities is obtained
by binning diffusivities into a normalized histogram accord-
ing to Eq. (6).

For ergodic systems, as considered here, time average
and ensemble average coincide. By additionally assuming
time invariance, Eq. (6) can be rewritten as

p(D, τ ) =
∫

dr δ

(
D − r2

2d τ

)
p(r, τ ) (7)

with the probability density, Eq. (2), given by p(r, τ )
= 〈δ(r − r(τ ))〉. By performing the angular integration,
Eq. (6) or Eq. (7) can also be expressed as

p(D, τ ) =
∫ ∞

0
dr δ

(
D − r2

2d τ

)
pr(r, τ ), (8)

in terms of the radial propagator pr(r, τ ), which is the
probability density p(r, τ ) integrated over the surface of a
d-dimensional sphere with radius r.

The delta functions in Eqs. (7) and (8) simply describe
a transformation of the coordinates from displacements
to diffusivities. Hence, the distribution of diffusivities is a
rescaled version of the propagator. This becomes obvious
by expanding for r > 0, the delta function in Eq. (8) as
δ[D − r2/(2d τ )] = √

d τ/(2D) δ[r − √
2d τ D], which

yields the relation

p(D, τ ) =
√

d τ

2D
pr(

√
2d τD, τ ). (9)

Furthermore, it should be noted that the distribution of single-
particle diffusivities is closely related to the self part of the
van Hove function given in the Appendix A, which coincides
with p(r, τ ) given by Eq. (2) for identical particles. Hence,
the distribution of diffusivities is also a rescaled version of the
van Hove self-correlation function and offers some beneficial
properties for our investigations.

The diffusivity 〈D〉 results as the mean of the microscopic
single-particle diffusivities, Eq. (5). Therefore, for clarity, we
denote it in the following as mean diffusivity. According to
the definition of the distribution of diffusivities the mean dif-
fusivity has to obey the relation

〈D(τ )〉 =
∫ ∞

0
dD D p(D, τ ). (10)

It is thus obtained as the first moment of the probability den-
sity of diffusivities by a well-defined integration, avoiding any
numerical fit. Obviously it may also depend on the time lag τ .

In the special case of free diffusion of a particle, x(t +
τ ) − x(t) = ∫ t+τ

t
dt ′ ξ (t ′) is a fluctuating quantity taken from

one realization of the Gaussian white noise ξ (t) with vari-
ance proportional to the diffusion coefficient. With Eq. (3),
the mean propagator and the signal attenuation are seen to be
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interrelated by the Fourier transformation.18, 23 In the case of
normal diffusion in one dimension one has

p1(r1, τ ) = (4π〈D〉τ )−1/2 exp

(
− r2

1

4〈D〉τ
)

, (11)

where 〈D〉 stands for the diffusivity. To avoid confusion we
deviated from the usual way of denoting the diffusivity sim-
ply by D. This is because we use this notation to refer to
microscopic single-particle diffusivities Dt(τ ). By inserting
Eq. (11) into Eq. (3) the signal attenuation in PFG NMR ex-
periments is seen to obey the well-known exponential relation

�1(τ, k) = exp(−k2〈D〉τ ). (12)

Let us now consider a molecular random walk in a two-
dimensional plane. Equation (11) describes the probability of
a molecular displacement in any arbitrarily chosen direction.
For the probability that radial molecular displacements are
within the interval r . . . r + dr one obtains, therefore,

pr(r, τ ) dr = 1

4π〈D〉τ exp

(
− r2

4〈D〉τ
)

2πr dr . (13)

The mean squared displacement,

1

4τ
〈r2(τ )〉 = 1

4τ

∫ ∞

0
dr pr(r, τ )r2 = 〈D〉, (14)

obeys the well-known Einstein relation for normal diffusion
in two dimensions. Inserting the corresponding propagator
of homogeneous diffusion in two dimensions Eq. (13) into
Eq. (7) yields the distribution of single-particle diffusivities

p(D) = 〈D〉−1 exp(−D/〈D〉). (15)

In general, for homogeneous diffusion in d dimensions, the
distribution of diffusivities is found to be

pd (D) = Nd

1

D

(
D

〈D〉
)d/2

exp

(
−d

2

D

〈D〉
)

, (16)

where Nd can be obtained from the normalization condition
and is explicitly given by

Nd =

⎧⎪⎨
⎪⎩

1/
√

2π for d = 1

1 for d = 2

3
√

3/
√

2π for d = 3

. (17)

Since the system is governed by only one diffusion constant,
the dependence on τ vanishes in Eq. (16). However for het-
erogeneous diffusion, the distribution of single-particle diffu-
sivities additionally depends on the time lag τ . Then, p(D, τ )
cannot generally be expressed by a simple exponential func-
tion as in Eq. (16).

By inserting Eq. (15), the first moment of the distribution
of diffusivities, Eq. (10),∫ ∞

0
dD D/〈D〉 exp(−D/〈D〉) = 〈D〉, (18)

is easily seen to be fulfilled for homogeneous systems
and equals the mean squared displacement obtained in Eq.
(14). Hence, with p(D, τ ), which is a rescaled van Hove
self-correlation function, it becomes possible to determine
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FIG. 1. Distribution of diffusivities from a simulated trajectory of a homoge-
neous diffusion process in two dimensions. The distribution agrees well with
the exponential behavior expected from Eq. (15) and is independent of τ . The
inset depicts deviations between simulation and Eq. (15) for large D due to
insufficient statistics from finite simulation.

the mean diffusion coefficient of the system by ordinary
integration.

With Eq. (15) for diffusion in two dimensions, the distri-
bution of the single-particle diffusivities in homogeneous sys-
tems is seen to result in an exponential. The semi-logarithmic
plot of the number of trajectory segments governed by a par-
ticular single-particle diffusivity versus these diffusivities is
correspondingly expected to yield a straight line. Its negative
slope is defined as the reciprocal value of the mean diffusivity.
Figure 1 depicts the distribution of diffusivities of a homoge-
neous diffusion process in two dimensions. The data are ob-
tained from simulations of a system with diffusion coefficient
〈D〉 = 0.7 and gathered in a normalized histogram. For com-
parison, the solid line represents the analytical expression,
Eq. (15), and shows a good agreement with the histogram.
The inset of Fig. 1 shows deviations between simulated data
and Eq. (15) for large D due to insufficient statistics originat-
ing from the finite sample in simulation.

It is interesting to note that the shape of the distribution of
diffusivities of homogeneous diffusion is similar to that of the
attenuation function of PFG NMR diffusion measurements
(Eq. (12)). One has to note, however, that now, in contrast to
Eq. (12), the mean diffusivity 〈D〉 appears in the denomina-
tor of the exponent. From a semi-logarithmic plot of the PFG
NMR signal attenuation versus k2, the mean diffusivity thus
directly results as the slope rather than its reciprocal value.

In the simple cases of isotropic and homogeneous diffu-
sion both the signal attenuation from PFG NMR and the dis-
tribution of diffusivities from SPT resulted in well-known and
easily obtainable expressions. In the following we investigate
a more elaborated two-region system exhibiting inhomoge-
neous diffusion.

III. HETEROGENEOUS DIFFUSION IN
TWO-REGION SYSTEMS

Let us now consider molecular diffusion in an isotropic
two-region system. With the respective probabilities π i, the
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molecules are assumed to propagate with either the diffusiv-
ity D1 or D2 and to remain with the mean dwell times τm (m
= 1, 2) in each of these states of mobility. Thus, the observed
diffusion process exhibits dynamic heterogeneities emerging
as a time-dependent diffusion coefficient due to the exchange
of particles between two regions with different diffusion co-
efficients. For such heterogeneous systems, the behavior of
the distribution of single-particle diffusivities, in general, de-
viates from the mono-exponential decay. This is attributed to
a superposition of many different exponentials of the type of
Eq. (15) originating from trajectory segments which include
layer transitions during the time lag τ . Thus, we denote the
distribution of single-particle diffusivities by p(D, τ ) empha-
sizing its dependence on τ . Further, the superposition and ac-
cordingly the characteristics of the distribution of diffusivi-
ties strongly depend on the relation of dwell times and the
time lag τ between observed positions.14 For short time lags
compared to the dwell times, the exchange rates are very low.
Then, the two diffusion processes can be separated into the
two underlying processes. As a result, the probability density
is the weighted superposition of the mono-exponential decays
belonging to homogeneous diffusion inside each region. In
the opposite case, for time lags much larger than both dwell
times, the observation only reveals a long-term diffusion pro-
cess with the mean diffusion coefficient of the system. Hence,
the probability density is given by a mono-exponential decay
parameterized by this mean diffusivity.

In the case of a two-region system, the PFG NMR spin-
echo diffusion attenuation (and hence the Fourier transform
of the mean propagator) has been shown to result as a super-
position of two terms of the shape of Eq. (12) (Refs. 2 and 18)

�1(τ, k) = p′
1(k) exp(−k2D′

1(k)τ )

+p′
2(k) exp(−k2D′

2(k)τ ) (19)

with

D′
1,2(k) = 1

2

(
D1 + D2 + 1

k2

(
1

τ1
+ 1

τ2

)

∓
{[

D2 − D1 + 1

k2

(
1

τ2
− 1

τ1

)]2

+ 4

k4τ1τ2

}1/2
⎞
⎠ ,

(20)

p′
1(k) = 1 − p′

2(k),

p′
2(k) = 1

D′
2(k) − D′

1(k)
(π1D1 + π2D2 − D′

1(k)). (21)

It should be noted that the primed quantities in Eqs. (20)
and (21) depend on the intensity of the magnetic field gra-
dient being related to k and, thus, on the Fourier coordinate.
Therefore, Eq. (19) cannot be considered as a superposition of
separated populations of the two regions. It is rather the total
interference of spin-echo attenuations observed from both re-
gions. Further, the initial condition of a process described by
Eqs. (19)–(21) has to be chosen in such a manner that for the

initial time t = 0, the particles are located at a given position
x and are already distributed stationarily between the regions.
This is obvious since neither p′

1(k) nor p′
2(k) depends on t

which would be necessary to converge to the stationary distri-
bution. For any other initial distribution, Eq. (19) will only be
valid in the limit of t → ∞.

The signal attenuation can also be considered for the lim-
iting cases. For τ → 0, i.e., τ 	 τ 1, τ 2, the signal attenuation,

�1(τ, k) = π1 exp(−k2D1τ ) + π2 exp(−k2D2τ ), (22)

decomposes into the superposition of two signal attenuations
corresponding to each region. As discussed, two completely
separated diffusion processes are observed. Hence, the inverse
Fourier transformation leads to a superposition of the distri-
bution of diffusivities of each region. In contrast, for τ → ∞,
i.e., τ 
 τ 1, τ 2, the mixing of the two regions leads to the ob-
servation of an effective mean diffusion process with a signal
attenuation,

�1(τ, k) = exp(−k2(π1D1 + π2D2)τ ), (23)

containing the mean diffusion coefficient. Analogously, its in-
verse Fourier transform, i.e., the distribution of diffusivities,
is only characterized by the mean diffusion coefficient 〈D〉 =
π1D1 + π2D2. A detailed deviation of the limiting cases is
given in the Appendix C.

IV. SIMULATION OF TWO-REGION SYSTEMS

In order to simulate heterogeneous diffusion, we con-
sider a system with two regions where particles propagate
with different diffusivities and can change their state of mobil-
ity. Following the experiment with rhodamine in TEHOS,16, 30

this two-region system is modeled by a bi-layer system with
layer-dependent diffusion coefficients D1 and D2, respec-
tively. Such processes can formally be described as compos-
ite Markov processes31 or equivalently as multistate random
walks,32, 33 which are known to be widely applicable. A recent
biophysical application consists of changes in the diffusive
behavior of molecules in membranes due to random changes
of the molecules’ conformation.34 In the case of two states or
regions the probability density of finding the particle at posi-
tion x at time t is determined by the evolution equations

∂

∂t
p̂1(x, t) = w12p̂2(x, t) − w21p̂1(x, t) + D1∇2p̂1(x, t),

∂

∂t
p̂2(x, t) = w21p̂1(x, t) − w12p̂2(x, t) + D2∇2p̂2(x, t),

(24)

for each region with corresponding diffusion coefficients D1

and D2. Within each region the motion of the molecules is ac-
complished by ordinary two-dimensional diffusion, i.e., ran-
dom walkers experiencing shifts of the positions distributed
according to a Gaussian with a variance defined by the dif-
fusion coefficient in the region. The exchange between these
two diffusive regions is simulated by a jump process governed
by a master equation with jump rates wnm, which describe a
transition from region m to n (m, n = 1, 2). The inverse of the
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jump rates wnm yields the mean dwell time τm,

τ1 = 1

w21
and τ2 = 1

w12
, (25)

for which particles remain in region m. Further, the stationary
distribution between the regions,

π1 = w12

w12 + w21
and π2 = w21

w12 + w21
, (26)

is also dictated by the jump rates. With the stationary distribu-
tion the mean diffusion coefficient of the two-region system
is given by

〈D〉 = π1D1 + π2D2, (27)

which is the weighted average of the diffusion coefficients
belonging to each region.19

To investigate the effects of heterogeneous diffusion,
simulation of the two-region system is performed with the fol-
lowing system parameters. The diffusion coefficients within
each of the two regions are given by D1 = 0.1 and D2 = 1.0.
The jump rates w21 = 8 and w12 = 4 yield the dwell times
τ 1 = 0.125 and τ 2 = 0.25, respectively. Hence, the station-
ary distribution between the regions results in π1 = 1/3 and
π2 = 2/3 and a mean diffusion coefficient 〈D〉 = 0.7 is ob-
tained. The length of the time step in the simulation is chosen
to be �t = 0.01, which is much smaller than the dwell times
to ensure diffusive motion of the particles within the regions.

Simulation of Eq. (24) is depicted in Fig. 2(a). It shows
the trajectory of a particle in a bi-layer system, where the par-
ticle jumps between the layers. In each layer, diffusion is gov-
erned by a different diffusion coefficient denoted by the color
of the trajectory segments. Since in experiments with video
microscopy only a two-dimensional projection of the process
is observed, the trajectory is projected onto the x-y-plane in
Fig. 2(b). As a consequence, information about the layer is
obscured and can only be identified due to the color coding in
the figure. Hence, in the projection it is unknown which diffu-
sion coefficient currently governs the process. A description
of such observed diffusion processes by the Fokker-Planck
equation with time-dependent diffusion coefficient would be-
come possible if all trajectories jump synchronously. Since
in our bi-layer system the particles move independently, the
process is more complicated. As a result of the projection, the
observed process does not possess the Markov property any-
more since, in general, the Chapman–Kolmogorov equation
cannot be satisfied. The simulation provides an approach to
study properties of an N-layer system, which is closely related
to a system where the diffusion coefficient varies continuously
with the z-coordinate.

To avoid transient behavior in our simulation, the parti-
cle positions are initialized with their corresponding station-
ary distributions between the layers given by π i. It should be
noted, however, that experimental results will be influenced
by such transient effects if the tracer molecules require a suf-
ficiently long time to distribute between the layers of the sol-
vent. On the other hand, such slow relaxation is related to low
exchange rates leading to almost complete separation of the
two diffusive regions.14 This would allow for an appropriate
bi-exponential fit of our distribution of diffusivities although
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FIG. 2. Single-particle trajectory from simulation of diffusion in a bi-layer
system. (a) The particle performs diffusion with corresponding diffusion co-
efficients and jumps between the layers. (b) Projection of the trajectory shown
in (a) onto the x-y-plane as usually observed by single-particle tracking. In-
formation of the layer and the corresponding diffusion coefficient is lost in
the projection and can only be identified due to the color code.

the weights do not correspond to the stationary distributions
yet.

To investigate the connection between spin-echo signal
diffusion attenuation, as measured by PFG NMR, and distri-
bution of single-particle diffusivities, as assessed by SPT, we
simulated one particle. Next, we recorded squared displace-
ments along the simulated trajectory of 107 time steps. The
squared displacements are calculated from the changes of the
particle positions and are divided by the time lag τ elapsed
between the observations of the two positions. Hence, we ob-
tain scaled squared displacement with the dimension of a dif-
fusion coefficient. The thus obtained diffusivity is a fluctu-
ating quantity along a trajectory. Finally, we gather them in a
histogram counting their occurrences. The histogram contains
data from a moving-time average since the diffusivities orig-
inate from single trajectories. Note that for ergodic systems
ensemble averaging will yield identical results. After normal-
izing the histogram, we obtain a probability density referred
to as the distribution of diffusivities. The distribution of dif-
fusivities contains all information about the diffusivities of
the process and their fluctuations. Following the experiment,
only a fraction of the time steps is available for the distribu-
tion depending on the selected time lag. Thus, our resulting
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distributions of diffusivities depicted in log-linear plots have
their lower boundary at 10−3 since data below suffer from in-
sufficient statistics.

V. APPROXIMATION OF DIFFUSIVITY DISTRIBUTIONS

Since an exact relation of the PFG NMR signal atten-
uations to distributions of diffusivities requires the inverse
Fourier transformation, we are now going to use the set of
Eqs. (19)–(21) for an approximation of the probability distri-
bution of the single-particle diffusivities in a two-region sys-
tem. We proceed in analogy with our treatment of the sim-
ple system with only one (mean) diffusivity. In either case
the information about the probability distribution p(D, τ ) of
the single-particle diffusivities D is clearly contained in the
propagator. For the system with one diffusivity this propa-
gator is given by Eq. (11). Its Fourier transform (Eq. (12),
which is nothing else than the PFG NMR spin-echo diffusion
attenuation curve) was found to coincide with the shape of
the probability distribution of the single-particle diffusivities
(Eq. (15)) with the only difference that the mean diffusivity,
which represents the slope in the semi-logarithmic attenua-
tion plots, appears in the denominator of the exponent in the
distribution function p(D).

In the two-region system, the PFG NMR spin-echo dif-
fusion attenuation (and hence the Fourier transform of the
propagator) is now found to be given by two exponentials
(Eq. (19)) of the form of Eq. (12). Formally we may re-
fer, therefore, to two populations with the relative weights
p′

i and the effective (mean) diffusivities D′
i as quantified by

Eqs. (20) and (21). Following the analogy of our simple initial
system, as a first attempt, the resulting probability function
of the single-particle diffusivities may be approximated by a
corresponding superposition of two exponentials of the type
of Eq. (15),

p(D, τ ) � p̃(D, k̃(τ )) = p′
1(k̃)

1

D′
1(k̃)

exp(−D/D′
1(k̃))

+p′
2(k̃)

1

D′
2(k̃)

exp(−D/D′
2(k̃))

(28)

with the parameters p′
i(k̃) and D′

i(k̃) as given by Eqs. (20) and
(21). Since this approximation avoids Fourier transformation,
a proper τ -dependence of k̃ has to be chosen for the primed
quantities. It should be noted that the transformation of
Eq. (19) from the Fourier space will only result in a superposi-
tion of two exponentials in real space if the primed quantities
in Fourier space are independent of k̃. Hence, Eq. (28) could
only serve as a rough approximation of the observed process.
However, inserting Eq. (28) into Eq. (10), the mean diffusivity
of the two-region system results in

〈D〉 = p′
1(k̃)D′

1(k̃) + p′
2(k̃)D′

2(k̃) = π1D1 + π2D2 (29)

with the second equality resulting from the application of
Eqs. (20) and (21). This is exactly the result which is well-
known19 and it should be noted that it does not depend on τ .

Further on, we may consider the limiting cases k̃ → 0
and k̃ → ∞ which can be translated to r → ∞ and r → 0,

respectively. Intuitively, large displacements r → ∞ are re-
lated to long observation times τ → ∞ and vice versa. This
relation is substantiated by keeping k̃2τ constant (see also
Eq. (32)) where k̃ → 0 corresponds to τ → ∞ and vice
versa. Due to this, the respective limits of p̃(D, k̃(τ )) and
p(D, τ ) should coincide. As a result we obtain the expected
expressions

lim
k̃→∞

p̃(D, k̃(τ )) = lim
τ→0

p(D, τ )

= π1D
−1
1 exp(−D/D1) + π2D

−1
2 exp(−D/D2), (30)

and

lim
k̃→0

p̃(D, k̃(τ )) = lim
τ→∞ p(D, τ )

= 〈D〉−1 exp(−D/〈D〉). (31)

Since the diffusivities and probabilities D′
i and p′

i occur-
ring in Eqs. (19)–(21) depend on the Fourier coordinate k̃, we
have referred to the probability density in this context as an
approximated one, p̃(D, k̃(τ )). Hence, Eq. (28) in the given
notation is unable to provide an approximation of the proba-
bility distribution function of the single-particle diffusivities
over the whole diffusivity scale. This is in perfect agreement
with the previous results14 where it has been shown that the
distribution of diffusivities, in general, cannot be represented
by a weighted superposition of the underlying homogeneous
diffusion processes. However, such an approximation of the
probability density might become possible by inserting an ap-
propriately selected value for the Fourier coordinate. As a first
trial, one may put

k̃−2 = 〈D〉τ , (32)

which ensures highest sensitivity with respect to the space
scale covered during the experiments. Note that in PFG NMR
experiments, the exponent in the signal attenuation, Eq. (12),
is of the order of 1, which yields an easily observable PFG
NMR spin-echo diffusion attenuation.

Figure 3 depicts the distribution of diffusivities from a
simulated two-dimensional trajectory in a two-region system
with mean dwell times τ 1 = 0.125 and τ 2 = 0.25 for three
time lags τ = 0.01, 0.2, and 1.0. Further, the approximation
of the distribution of diffusivities from Eq. (28) is investigated
for corresponding k̃. Thus, the limiting case of completely
separated diffusion processes found for τ → 0 is simulated
with τ = 0.01 	 τ 1, τ 2 and compared with Eq. (28) for
k̃ → ∞, i.e., Eq. (30). On the other hand, the second limit-
ing case of mean diffusion emerging for τ → ∞ is obtained
from simulation with τ = 1.0 
 τ 1, τ 2 and comparison with
Eq. (28) for k̃ → 0, i.e., Eq. (31). Fig. 3 clearly shows that
simulated data from both limiting cases are recovered reason-
ably by Eq. (28) for corresponding k̃. In contrast, the distri-
bution of diffusivities reveals a more complicated behavior in
the intermediate exchange regime between the limiting cases.
Since the time lag τ = 0.2 is in the order of the mean dwell
times, neither a mean diffusion process nor a weighted su-
perposition of completely separated processes is observed.
In particular, the distribution cannot be approximated by
Eq. (28) with a given k̃(τ ). This is obvious, since with such an
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FIG. 3. Comparison of distribution of diffusivities (colored histograms) from
a simulated two-dimensional trajectory with numerical approximation via
Eq. (28) (solid lines) of a two-region system for time lags τ = 0.01, 0.2, and
1.0 and mean dwell times of τ 1 = 0.125 and τ 2 = 0.25. The limiting cases of
k̃ → 0 and k̃ → ∞ approximate the simulated data reasonably. However, for
τ = 0.2 in the order of the dwell times an intermediate k̃ ≈ 2.67, as suggested
in Eq. (32), does not approximate the density sufficiently.

estimate of k̃ the dependence on k of the primed quantities of
Eqs. (20) and (21) in Fourier space is neglected. Then, the in-
verse Fourier transformation of Eq. (19) as well as the trans-
formation to the distribution of diffusivities would yield a
simple superposition of two exponentials again. In general,
this does not provide appropriate results for arbitrary dwell
times and time lags.14 As a consequence, a general expres-
sion requires inverse Fourier transformation of the PFG NMR
attenuation curve.

VI. EXACT RELATION BETWEEN SIGNAL
ATTENUATION AND DISTRIBUTION OF DIFFUSIVITIES

In Sec. V, the approximation of the distribution of diffu-
sivities by Eq. (28) was shown to reproduce the limiting cases
of time lag τ as well as the correct mean value. Cases in be-
tween the limits did not deliver appropriate results. In order to
produce proper results for arbitrary τ , we derive general for-
mulae for the transformation of PFG NMR signal attenuations
to distributions of single-particle diffusivities.

Quite formally two steps have to be accomplished to de-
rive a general expression of p(D, τ ) from �(τ, k). As a first
step, inverse Fourier transformation of Eq. (1) yields the prop-
agator in real space. Further, the shift r between positions, as
given by the propagator, can be translated into diffusivities
via scaled squared displacements leading to the distribution
of diffusivities as defined in Eq. (7).

The two steps can be combined to directly obtain the
probability density from signal attenuation. Depending on di-
mensionality d, the distribution of diffusivities is given by

p(D, τ ) =
∫

dr δ

(
D − r2

2d τ

)

× 1

(2π )d

∫
dk �(τ, k) exp(−ikr). (33)

With the rescaled coordinates,

r′ = r√
2d τ

and k′ = k
√

2d τ , (34)

it is further simplified to

p(D, τ ) =
∫

dk′ �

(
τ,

k′
√

2d τ

)
1

(2π )d
Sd (k′,D), (35)

with Sd (k,D) being the Fourier transform of a uniform den-
sity on the surface of a d-dimensional sphere of radius

√
D,

Sd (k,D) =
∫

dr δ(D − r2) exp(−ikr). (36)

Since Eq. (36) can be expressed analytically35 by

Sd (k,D) = πa+1Da2aJa(|k|
√

D)(|k|
√

D)−a (37)

with a = d/2 − 1 and Ja(x) denoting the Bessel function
of the first kind, the exact transformation of signal attenua-
tions �(τ, k) to distributions of diffusivities p(D, τ ) is accom-
plished without applying an inverse Fourier transformation.

For isotropic systems, the signal attenuation �(τ, k) de-
pends only on the absolute value of k, i.e., the radial inten-
sity of the field gradient k. Without loss of generality, an ar-
bitrary direction k = (k, 0, . . . , 0)T may be considered and
the corresponding signal attenuation is denoted by �1(τ, k) =
�(τ, k = (k, 0, . . . , 0)T). Then the following expressions are
obtained for the distribution of diffusivities depending on the
dimensionality of the system. For one-dimensional systems,
Eq. (33) reduces to

p(D, τ ) = 1

π
√

D

∫ ∞

0
dk �1

(
τ,

k√
2τ

)
cos(k

√
D).

(38)
The transformation for d = 2 can be written as

p(D, τ ) = 1

2

∫ ∞

0
dk �1

(
τ,

k√
4τ

)
kJ0(k

√
D), (39)

and for d = 3 one obtains

p(D, τ ) = 1

π

∫ ∞

0
dk �1

(
τ,

k√
6τ

)
k sin(k

√
D) (40)

using polar and spherical coordinates, respectively. The given
transformations move the whole dependence on time lag τ

to the signal attenuation. This is achieved by rescaling the k
coordinate by

√
2d τ .

Hence, a signal attenuation of an ensemble diffusing in
a two-dimensional plane measured by PFG NMR is trans-
formed into a distribution of single-particles diffusivities via
Eq. (39). For homogeneous diffusion, Eq. (39) yields the ex-
pected probability of single-particle diffusivities, Eq. (15), by
inserting the simple exponential relation, Eq. (12), as signal
attenuation.

Furthermore, the limiting cases of time lag τ are repro-
duced exactly by the presented transformations, Eqs. (38)–
(40): For τ → 0 the distribution of single-particle diffusivi-
ties for the given dimensionality results in the superposition
of two respective distributions of Eq. (16) denoting two sep-
arated, homogeneous diffusion processes. On the other hand,
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FIG. 4. Comparison of distributions of single-particle diffusivities from a
simulated two-dimensional trajectory (colored histograms) with distributions
obtained by applying Eq. (39) for an exact transformation of the PFG NMR
spin-echo signal diffusion attenuation, Eq. (19), of a two-region system for
time lags τ = 0.05, 0.2, 0.5, and 1.0 and mean dwell times τ 1 = 0.125 and τ 2
= 0.25 (solid lines). The data agree well with each other for each τ . Further,
the dependence on τ is apparent, which is typical for diffusion in heteroge-
neous media.

for τ → ∞, the resulting distribution of single-particle dif-
fusivities for the given dimensionality is also of the type of
Eq. (16), respectively, and depends only on the mean diffusion
coefficient of the system. A detailed derivation of the limiting
cases is given in the Appendix C.

To examine the transformations, the same parameters, for
which the approximation via Eq. (28) failed, are used again,
now applying Eq. (39) for an exact transformation of the PFG
NMR signal attenuation relation, Eq. (19), into the distribu-
tion of single-particle diffusivities. The results are depicted in
Fig. 4 and again the distribution of diffusivities from a simu-
lated two-dimensional trajectory is given for comparison. For
each of the chosen τ = 0.05, 0.2, 0.5, and 1.0, a perfect agree-
ment is obvious, confirming the relation between the two ap-
proaches. Moreover, Fig. 4 clearly illustrates how the distribu-
tion of diffusivities depends on τ and reveals a transition from
a non-exponential behavior to a mono-exponential decay. For
small τ corresponding to diffusion in separated regions, it de-
viates considerably from a mono-exponential behavior. How-
ever, for long-term observations (τ → ∞) only a mean dif-
fusion process is observed due to averaging of the motion in
both regions. Consequently, this yields a mono-exponential
decay of the distribution of diffusivities. This transition re-
veals the heterogeneity of the diffusion process.14 Hence, in
order to characterize diffusive motion the distribution of dif-
fusivities has to be investigated for its dependence on the time
lag τ .

VII. INFLUENCE OF EXPERIMENTALLY BOUNDED k

PFG NMR spin-echo diffusion attenuation functions can
only be measured up to a finite intensity k of the magnetic field
gradient pulses. However, to generate the distribution of diffu-
sivities exactly, the signal attenuation has to be given over the
whole intensity scale. Hence, the effect of an experimentally
bounded Fourier coordinate k has to be considered.
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FIG. 5. Transformation of Eq. (39) of PFG NMR spin-echo signal diffu-
sion attenuation by integration up to kmax (solid lines) due to experimentally
bounded intensity k of the field gradient pulses. The distribution of single-
particle diffusivities (colored histogram) from a simulated two-dimensional
trajectory will only be obtained reasonably if k is given over the whole inten-
sity scale. For smaller intervals of k deviations become clearly visible as well
as oscillations introduced by the inverse Fourier transformation.

Figure 5 illustrates the influence of finite k on the distri-
bution of single-particle diffusivities obtained for τ = 0.2. If
with the maximal applied kmax the respective spin-echo signal
is not sufficiently attenuated, the transformation of the signal
attenuation from a finite interval will yield significant devia-
tions from the expected probability distribution. As a conse-
quence, the first moment, i.e., the mean diffusion coefficient
of the system, is altered accordingly. Furthermore, due to the
bounded signal attenuation, the inverse Fourier transforma-
tion introduces oscillations since only a limited range of the
spectrum contributes to the values in real space. The reason
is the integrand in Eqs. (38)–(40) which will only vanish for
large k if �1 decays faster than the remainder.

This effect may clearly be identified in Fig. 5. In order
to obtain reasonable results, the signal must be attenuated to a
sufficient extent. Simulated data of two-dimensional diffusion
processes have shown that the attenuation should fall below
10−4 of its maximum at kmax to suppress oscillations. This
has to be considered when dealing with experimental data.

The necessity of fast decaying �1 becomes especially
important for large time lags τ . In the case of small time lags τ

→ 0 our rescaling of the k coordinate in Eqs. (38)–(40) leads
to k/

√
τ → ∞ in the second argument of �1(τ, k/

√
2d τ ).

Thus, for small τ , signal attenuation becomes more pro-
nounced and reduces the influence of the bounded k. More-
over, signal attenuation is closely related to the incoherent
structure factor,36 as demonstrated in the Appendix A, deal-
ing with similar limitations. A possible solution is to split the
integral into two parts, integrating numerically up to the ex-
perimental limit kmax and assuming an analytical expression
for the remaining part.

Since the oscillations in the approximate densities of
Fig. 5 seem to be induced by the hard cutoff at the wave-
length k = kmax, a possible strategy in reducing these oscil-
lations may lie in applying an appropriate window function
as in spectrum estimation procedures. We tested this option
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FIG. 6. Same situation as in Fig. 5, but the densities are now obtained by re-
placing the sharp cutoff at k = kmax by a smooth cutoff resulting from apply-
ing a half Hann window. A considerable improvement is achieved, especially
if the value kmax is not too small.

by applying a half Hann window to smoothen the cutoff. The
best results were obtained for a window decaying from the
value one at k = 0 to zero at k = kmax. The obtained results
are very convincing if the cutoff value kmax is not too small as
can be seen in Fig. 6.

VIII. CONCLUSIONS

We investigated the connection between the signal atten-
uation measured by pulsed field gradient nuclear magnetic
resonance and the distribution of single-particle diffusivities
obtained from single-particle tracking. Due to their interrela-
tions with the diffusion propagator of the system, the distri-
bution of diffusivities is expressed by a general transforma-
tion of the signal attenuation. In the special case of a system
involving two different states of diffusive mobility, the two-
region exchange model of PFG NMR offers analytical expres-
sions and allows for a comparison of analytical and simulated
data. An approximation of the distribution of single-particle
diffusivities via two populations with relative weights avoids
the inverse Fourier transformation. Even in this simple sys-
tem, such an approximation will only yield appropriate results
if the time lag is much larger or much smaller than the dwell
times. These cases correspond to an observation of the mean
diffusion of the system and a process of completely separated
diffusive motion without transition between the regions, re-
spectively. Thus, in general, to obtain a proper distribution
of single-particle diffusivities for diffusion in two-region sys-
tems, the exact transformation of the respective NMR signal
attenuations is necessary. Only in this way we found perfect
agreement of the experimental and analytical data. However,
since PFG NMR data in some systems cannot be measured
over a sufficiently large dynamic range, the inverse Fourier
transformation may introduce deviations and oscillations. In
these cases, the data analysis has to be performed with care
and may require the use of additional information.

In summary, the investigated connection between two
popular methods to experimentally observe and analyze dif-

fusive motion offers new approaches for the evaluation of
data. Hence, the methods of analysis may benefit from each
other. This becomes especially relevant for systems with het-
erogeneities, where the distribution of diffusivities exhibits a
dependence on the time lag. For more elaborated processes it
may even not become stationary and enables to assess non-
trivial properties of such systems. Since the distribution of
diffusivities can be measured easily and contains more infor-
mation from the propagator than well-established methods, it
should be used for future analysis of experimental data.
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APPENDIX A: CORRESPONDENCE BETWEEN
INCOHERENT INTERMEDIATE SCATTERING
FUNCTION AND SIGNAL ATTENUATION

The signal attenuation of PFG NMR and the incoher-
ent intermediate scattering function as well as the dynamic
structure factor are closely related. In this appendix, their cor-
respondence is illustrated briefly and further details can be
found in Refs. 18, 37, and 38.

The observed motion of tracer particles can be analyzed
by the self part of the van Hove time-dependent pair correla-
tion function,

Gs(r, τ ) =
〈

1

N

N∑
i=1

δ(r − (xi(τ ) − xi(0)))

〉
, (A1)

describing the correlation of N individual particles.39 Its spa-
tial Fourier transformation,

S(k, τ ) =
∫

dr Gs(r, τ ) exp(ikr), (A2)

leads to the incoherent intermediate scattering function,

S(k, τ ) = 1

N

N∑
i=1

〈exp(ik(xi(τ ) − xi(0)))〉, (A3)

which is linked to the velocity autocorrelation function of
the particles. Furthermore, the incoherent intermediate scat-
tering function S(k, τ ) is related to the dynamic structure fac-
tor S(k, ω) known from neutron scattering via Fourier trans-
formation in τ , i.e., the power spectrum of S(k, τ ), where ω

denotes a frequency.
For ergodic systems, S(k, τ ) can be obtained from an ar-

bitrary particle,

S(k, τ ) = 〈exp(ik(x(τ ) − x(0)))〉

= 1

V 2

∫ ∫
dx dx′ exp(ik(x − x′) p(x, τ, x′, 0),

(A4)
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where V is the normalization and p(x, τ, x′, 0) denotes the
joint probability of a particle to be located initially at x′ and
at time τ at position x. The joint probability can be expressed
by the conditional probability,

p(x, τ, x′, 0) = p(x, τ |x′, 0) p0(x′). (A5)

Since during time τ the particle accomplished a displacement
r, its positions are interrelated by x = x′ + r. Due to transla-
tion invariance, without loss of generality, x′ = 0 leads to the
propagator in Fourier space,

1

V

∫
dr exp(ikr) p(r, τ ) = �(τ, k), (A6)

corresponding to the signal attenuation in PFG NMR as in-
troduced in Eq. (1). Hence, signal attenuation and incoher-
ent intermediate scattering function coincide. Furthermore,
for identical particles without restrictions by the boundaries
the averaging over the particles in Eq. (A1) can be omitted
and Gs(r, τ ) is equal to p(r, τ ) given by Eq. (2).

For isotropic systems the self part of the radial van Hove
time-dependent pair correlation function,

Gs(r, τ ) =
〈

1

N

N∑
i=1

δ (r − |xi(τ ) − xi(0)|)
〉

, (A7)

considers only absolute values of the displacements. Again,
for identical particles without restrictions by the boundaries
an arbitrary particle can be considered and Gs(r, τ ) is equal
to pr(r, τ ).

APPENDIX B: RELATION BETWEEN EVOLUTION
EQUATIONS AND PFG NMR SIGNAL ATTENUATION

For Eq. (24), i.e., the evolution equations of the proba-
bility density to find a particle at position x at time t, the mo-
ments of the random variable x can be obtained via the charac-
teristic functions. By introducing the vector p(k, t) compris-
ing the characteristic functions of each region and the matrix
W(k) consisting of the elements

W(k)nm = wnm +
(

−Dnk2 −
∑

l

wln

)
δnm, (B1)

the Fourier transform of Eq. (24) can be written elegantly as

d

dt
p(k, t) = W(k) p(k, t), (B2)

where

p(k, t) = exp(t W(k)) p(k, 0) (B3)

is easily seen to be the solution. For the two-region system the
initial distribution p(k, 0) = (π1, π2)T is given by the equilib-
rium distribution between the regions.

Applying the spectral decomposition the matrix exponen-
tial in Eq. (B3) for the two-region system can be written as

exp(t W(k)) =
2∑

α=1

exp(tμα(k)) Aα(k), (B4)

where

μ1,2(k) = 1

2
(−D1k2 − D2k2 − λ ± D(k)) (B5)

denotes the eigenvalues and,

A1,2(k) = 1

2D(k)

(
D(k) ± η(k) ±2w12

±2w21 D(k) ∓ η(k)

)
,

(B6)
represent the corresponding matrices from the dyadic product
of the right- and left-eigenvectors with

λ = w21 + w12, (B7)

η(k) = −D1k2 + D2k2 − w21 + w12, (B8)

D(k) = {(D1k2 + D2k2 + λ)2 − 4D1D2k4

−4D1k2w12 − 4D2k2w21}1/2. (B9)

Finally, the signal attenuation obtained from PFG NMR
corresponds to the projection of the characteristic function

�(τ, k) = (
1 1

)
exp(τ W(k))

(
π1

π2

)
, (B10)

where k = k ê is measured in the direction of the applied field
gradient denoted by the unit vector ê. Since for isotropic sys-
tems an arbitrary direction can be considered, Eq. (B10) re-
sults in the expressions given in Eqs. (19)–(21) for the two-
region system.

APPENDIX C: EXACT TRANSFORMATION OF
LIMITING CASES

By choosing k = k ê, the isotropic signal attenuations for
dimensionality d in Eqs. (38)–(40)

�1

(
τ,

k

u
√

τ

)
with u =

⎧⎪⎨
⎪⎩

√
2 for d = 1

2 for d = 2√
6 for d = 3

,

are considered in an arbitrary direction of the applied field
gradient with intensity k. The exponent of Eq. (B10) is given
by

τ W
(

k ê
u
√

τ

)
= τ

(
−w21 w12

w21 −w12

)
− k2

u2

(
D1 0

0 D2

)
.

(C1)
Based on these expressions the limiting cases are discussed
separately.

1. Limiting case τ → 0

In the limiting case of τ → 0, only the diagonal matrix
on the right-hand side of Eq. (C1) remains. Hence, the ma-
trix exponential can be expressed by the exponentiation of the
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diagonal elements and Eq. (B10) reduces to

�1

(
τ,

k

u
√

τ

)

= (
1 1

)⎛⎜⎝ exp
(
− k2

u2 D1

)
0

0 exp
(
− k2

u2 D2

)
⎞
⎟⎠

(
π1

π2

)
, (C2)

yielding a superposition of two exponentials corresponding
to separated regions. This is in agreement with the previous
findings since for short times τ no exchange between the re-
gions occurs. Obviously, this result is not restricted to the two-
region system but holds for an arbitrary number of diffusion
states.

Applying the presented transformations Eqs. (38)–(40)
for dimensionality d to the obtained signal attenuation results
in a distribution of diffusivities which is the superposition of
two distributions of diffusivities for homogeneous diffusion
in each region as given by Eq. (16), respectively.

2. Limiting case τ → ∞
In the limiting case of τ → ∞, the situation is more com-

plicated. Arguing analogously to the case of τ → 0 does not
result in an appropriate expression. If the diagonal matrix on
the right-hand side of Eq. (C1) is neglected, the signal attenu-
ation will reduce to 1 yielding only its normalization. Hence,
this limiting case is addressed by involving the spectral de-
composition. The matrices Eq. (B6) are given by

A1,2

(
k ê

u
√

τ

)
τ→∞−−→A1,2(0),

A1(0) = 1

λ

(
w12 w12

w21 w21

)
, (C3)

A2(0) = 1

λ

(
w21 −w12

−w21 w12

)
. (C4)

Due to the projection in the signal attenuation Eq. (B10)(
1 1

)
A2(0) = (

0 0
)
, (C5)

the contribution from A2(0) vanishes. Thus, for τ → ∞
only eigenvalue μ1 contributes to the spectral decomposition.
Moreover, μ1 = 0, which explains that the contribution from
the diagonal matrix in Eq. (C1) cannot be neglected.

Then, according to Eq. (B4), the exponential of
τ μ1(k ê/(u

√
τ )) is required, which is given by

τ μ1

(
k ê

u
√

τ

)
= 1

2

(
−a − λτ +

√
(a + λτ )2 − b − cτ

)
(C6)

with

a = D1
k2

u2
+ D2

k2

u2
, (C7a)

b = 4D1D2
k4

u4
, (C7b)

c = (4D1w12 + 4D2w21)
k2

u2
. (C7c)

The square root in Eq. (C6) can be rewritten as√
(a + λτ )2 − b − cτ

= λτ

√
1 +

(
2a

λ
− c

λ2

)
1

τ
+ a2 − b

λ2

1

τ 2

= λτ

(
1 + 1

2

(
2a

λ
− c

λ2

)
1

τ
+ O

(
1

τ 2

))
. (C8)

After further simplification, Eq. (C6) reduces to

τ μ1

(
k ê

u
√

τ

)
� 1

2

(
−a − λτ + λτ + a − c

2λ

)

= − c

4λ
, (C9)

which results in

τ μ1

(
k ê

u
√

τ

)
� −(π1D1 + π2D2)

k2

u2

= −〈D〉 k2

u2
, (C10)

by applying Eq. (C7c) and Eqs. (26) and (29). Hence in the
limiting case of τ → ∞, the signal attenuation,

�1

(
τ,

k

u
√

τ

)
= exp

(
−〈D〉 k2

u2

)
, (C11)

depends only on the mean diffusion coefficient of the two-
region system.

By integrating the signal attenuation Eq. (C11) for the
limiting case τ → ∞ with the presented transformations
Eqs. (38)–(40) for dimensionality d, as expected, the respec-
tive distributions of diffusivities, Eq. (16) are obtained, which
correspond to homogeneous diffusion with the mean diffusion
coefficient 〈D〉.

To conclude, the derivation of the two limiting cases re-
veals the properties of the distribution of single-particle dif-
fusivities and its dependence on τ . Starting from the limit-
ing case τ → ∞, where only eigenvalue μ1 contributes, the
weight of μ2 increases for decreasing τ . This is reflected in
the distribution of diffusivities by the dependence on τ as pre-
sented in Fig. 4. It describes the transition from a mean diffu-
sion process to two completely separated diffusion processes
for τ → ∞ and τ → 0, respectively. It should be noted that for
the self part of the van Hove function the limiting cases cannot
be determined. However, for the distribution of diffusivities,
which is a rescaled van Hove self-correlation function, both
limits are well-defined.
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